Химические источники тока примеры

Химические источники тока примеры

Обозначение на схеме и устройство химических источников тока

К химическим источникам тока причисляют гальванические элементы и аккумуляторы. Есть и другие химические источники тока, но они менее распространены. В обиходе гальванический элемент получил название батарейка. Это не совсем верное определение, так как батарейкой можно назвать несколько отдельных гальванических элементов соединённых вместе – это и есть батарея питания или батарейка.

На принципиальных схемах гальванический элемент обозначается так.

Так обозначают один гальванический элемент или один элемент аккумулятора.

Но поскольку номинальное напряжение на одном гальваническом элементе обычно не более 1,5 вольта, их соединяют в батареи питания. Батарея питания на принципиальной схеме обозначается вот так.

Здесь показано, что батарея питания состоит из двух отдельных гальванических элементов. Общее напряжение на полюсах этой составной батареи — 3 вольта из расчёта, что каждый из элементов имеет на полюсах напряжение 1,5 вольта. Также на схемах можно встретить и такое обозначение.

Это тоже условное изображение батареи питания или батарейки на принципиальной схеме, только здесь не уточняется, сколько именно гальванических элементов используется в батарее, а указано лишь общее напряжение на полюсах батареи.

Одиночный аккумуляторный элемент обозначается на схемах так же, как и отдельный гальванический элемент. Номинальное напряжение одного аккумуляторного элемента обычно составляет около 1,25 вольт. Чтобы получить аккумулятор с большим напряжением аккумуляторные элементы соединяют вместе – получается аккумуляторная батарея или просто аккумулятор. Обозначение аккумуляторной батареи на схемах такое же, как и батареи, составленной из гальванических элементов.

Чем гальванический элемент отличается от аккумулятора?

Дело в том, что гальванический элемент сам является источником постоянного тока, который образуется за счёт необратимой химической реакции. Гальванический элемент причисляют к первичным источникам тока.

Аккумулятор является так называемым вторичным источником тока. Почему? Потому, что перед тем, как использовать аккумулятор, его нужно предварительно зарядить от источника постоянного тока — зарядника. Только после полной зарядки аккумулятор сможет питать электронное устройство. Отличительным качеством аккумуляторов является то, что их можно заряжать и разряжать много раз. В отличие от аккумулятора, гальваническая батарея питания после своего полного разряда не может быть использована повторно.

Какие существуют батарейки?

Наибольшее распространение в настоящее время получили щелочные батареи питания. Их ещё называют алкалиновыми – производное от английского слова alkaline – «щелочь».

Работа щелочной батарейки основана на окислительно-восстановительной химической реакции между цинком и диоксидом марганца. Результатом, а точнее полезным продуктом этой реакции является электрический постоянный ток и тепло, которое не используется. Электрическая ёмкость щелочной батарейки составлет около 1700 — 3000 мАч. По величине своей ёмкости, щелочные батарейки лидируют по сравнению с солевыми батарейками, электроёмкость которых меньше и составляет 550 — 1100 мАч.

Щелочная батарейка устроена следующим образом. Взглянем на рисунок.

Корпусом элемента является никелированный стальной стакан. Он же является плюсовым контактом батарейки « +». Активная масса представляет собой смесь диоксида марганца (MnO2) и графита. Анодная паста – это смесь порошка цинка (Zn) и густого щелочного электролита. Электролитом обычно служит раствор гидроксида калия (KOH). Анодная паста отделена от активной массы сепаратором. Сепаратор разделяет реагенты, исключая их перемешивание и нейтрализацию заряда. Также сепаратор пропитан электролитом.

Отрицательный потенциал снимается с латунного стержня, который окружён анодной пастой. Стальная тарелка контактирует с латунным стержнем – токосъёмником и является отрицательным контактом элемента «».

Прокладка изолирует никелированный стальной стакан от стальной тарелки, препятствуя тем самым короткому замыканию. Кроме этого прокладка сдерживает давление газа, который в незначительном количестве образуется при химической реакции. В толще прокладки имеется защитный клапан или по-другому предохранительная мембрана. Защитный клапан служат для того, чтобы при чрезмерном давлении газа сработать и выпустить его наружу. Это предотвращает взрыв щелочного элемента, но и приводит к его разгерметизации. Как правило, разгерметизация приводит к течи электролита.

Иногда, забыв вынуть уже подсевшие батарейки, через некоторое время можно обнаружить, что в батарейном отсеке появилась какая-то жидкость. Это и есть потёкший электролит. Он может вызвать коррозию контактов. Поэтому на упаковке с батарейками можно найти предупреждение о том, что севшие элементы нужно вынимать из электроприборов. Теперь вы знаете, зачем это нужно делать.
Итак, с устройством разобрались, теперь поговорим о том, как работает щелочной элемент.

Как работает щелочной элемент.

Для начала, маленькое отступление…
Как вы заметили, почему то анодная паста соединяется с помощью токосъёмника с отрицательным контактом элемента – стальной тарелкой. А ведь анод – это « +». Получается нестыковочка…

В чём тут дело? А дело в том, что в электронике есть один каламбур. По умолчанию, за направление тока в электрической цепи считается направление от плюса (анода) к минусу (катоду) – так повелось ещё с тех времён, когда электроника ещё зарождалась.

Но ведь электрический ток, как известно, это упорядоченное движение электронов, которые имеют отрицательный заряд. И поэтому, ток течёт оттуда, где есть избыток электронов, в направлении, где есть нехватка отрицательных зарядов (это и есть плюс – недостаток электронов). При этом получается, что ток течёт в реальности от отрицательного контакта к положительному. Именно поэтому образуется эта нестыковка, которая порой вводит начинающих радиолюбителей в ступор.

В электрохимии анодом принято считать тот электрод, на котором происходит процесс окисления. Так вот в щелочной батарейке (и не только) на аноде в результате окисления образуется избыток электронов. То есть по сути – это катод, «минус». Но, как уже говорилось, в электрохимии всё наоборот. Итак, электроны вырабатываются анодной пастой – смесью цинкового порошка (Zn) и густого электролита (раствора KOH).

Катодом же считается электрод, где происходит реакция восстановления. Далее электроны, которые были получены в результате реакции окисления, проходят по электрической цепи электронного прибора, и возвращаются опять в батарейку, но уже на катод, где эти электроны используются для восстановительной химической реакции. Катод – это диоксид марганца. Токоприёмником катода служит никелированный стальной стакан, который контактирует с активной массой – диоксидом марганца (MnO2).

Вот такая игра в наоборот. Напомню ещё раз, что в электронике за направление тока в цепи считается направление от плюса-«анода» к минусу-«катоду». В электрохимии всё наоборот. С этим и связаны особенности в названии реагентов химического источника тока.

Можно ли заряжать батарейки?

Также часто можно слышать вопрос: «Можно ли заряжать батарейки?» Ответим: «Лучше не стоит». Дело в том, что для вырабатывания электрической энергии в батарейках используется необратимая химическая реакция. Поэтому батарейка и является первичным источникам тока.

А вот в аккумуляторах используется обратимая химическая реакция, которая позволяет заряжать и разряжать их множество раз. Поэтому аккумуляторы и называют вторичными источниками тока.

Читайте также:  Бакси эко фор 240 инструкция

Несмотря на это, известно, что щелочные элементы допускают перезарядку, т.е. их можно зарядить и использовать повторно. Но такие, перезаряжаемые щелочные элементы имеют свою особую конструкцию. Также стоит отметить, что даже такие элементы нельзя перезаряжать много раз, обычно не более 25. В широкой продаже такие щелочные элементы не встречаются. Их маркируют как Rechargeable Alkaline Manganese.

Из всего этого следует, что заряжать обычные щелочные батарейки категорически не стоит. Такие эксперименты могут завершиться взрывом батарейки и разбрызгиванием электролита. А это не есть гуд +опасно для здоровья .

Чтобы замедлить химическую реакцию в щелочном элементе и, тем самым, продлить срок её хранения и снизить саморазряд батареи, в них раньше добавляли кадмий и ртуть. Эти вещества замедляли химическую реакцию, и цинк окислялся медленнее. Но, из-за токсичности ртути и кадмия их сейчас не используют, а применяют другие, менее вредные ингибиторы.

На многих батарейках можно даже увидеть надпись – 0% кадмия и ртути или 0% Hg & Cd. Это своеобразный маркетинговый ход, как бы намекающий на то, что данные батарейки безопасны.

Если вы с успехом дошли до этих строк, то теперь вас можно поздравить, ведь теперь вы знаете, как устроена и работает щелочная батарейка. И поэтому её и не обязательно разбирать . Кроме щелочных элементов питания существуют и другие, но об их устройстве мы расскажем в другой раз.

Уже более двух столетий человечество использует энергию химических реакций между различными веществами для получения постоянного тока.

Принцип работы

Окислительно-восстановительная реакция, протекающая между веществами, обладающими свойствами окислителя и восстановителя, сопровождаются выделением электронов, движение которых образует электрический ток. Однако, чтобы использовать его энергию, необходимо создать условия для прохождения электронов через внешнюю цепь, в противном случае она при простом смешивании окислителя и восстановителя выделяется во внешнюю среду теплом.

Поэтому все химические источники тока имеют два электрода:

анод, на котором происходит окисление;

катод, осуществляющий восстановление вещества.

Электроды на расстоянии помещены в сосуд с электролитом — веществом, проводящим электрический ток за счет процессов диссоциации среды на ионы.

Принцип преобразования химической энергии в электрическую

На рисунке показано, что электроды размещены в отдельных сосудах, соединенных солевым мостиком, через который создается движение ионов по внутренней цепи. Когда внешняя и внутренняя цепь разомкнуты, то на электродах протекают два процесса: переход ионов из металла электрода в электролит и переход ионов из электролита в кристаллическую решетку электродов.

Скорости протекания этих процессов одинаковы и на каждом электроде накапливаются потенциалы напряжения противоположных знаков. Если их соединить через солевой мостик и приложить нагрузку, то возникнет электрическая цепь. По внутреннему контуру электрический ток создается движением ионов между электродами через электролит и солевой мостик. По внешней цепи возникает движение электронов по направлению от анода на катод.

Практически все окислительно-восстановительные реакции сопровождаются выработкой электроэнергии. Но ее величина зависит от многих факторов, включающих объемы и массы используемых химических веществ, примененных материалов для изготовления электродов, типа электролита, концентрации ионов, конструкции.

Наибольшее применение в современных химических источниках тока нашли:

для материала анода (восстановителя) — цинк (Zn), свинец (Pb), кадмий (Cd) и некоторые другие металлы;

для материала катода (окислителя) — оксид свинца PbO2, оксид марганца MnO2, гидроксооксид никеля NiOOH и другие;

электролиты на основе растворов кислот, щелочей или соли.

Способы классификации

Одна часть химических источников тока может повторно использоваться, а другая нет. Этот принцип взят за основу их классификации.

Классификация химических элементов

Электродвижущая сила гальванических элементов, в зависимости от конструкции, достигает 1,2÷1,5 вольта. Для получения больших значений их объединяют в батареи, соединяя последовательно. При параллельном подключении батарей увеличивается ток и мощность.

Принято считать, что первичные химические источники тока не поддерживают повторную зарядку, хотя более точно это положение можно сформулировать по-другому: ее проведение экономически не целесообразно.

Резервные первичные химические источники тока хранятся в состоянии, когда электролит изолирован от электродов. Это исключает протекание окислительно-восстановительной реакции и обеспечивает готовность к вводу в работу. Они не используются повторно. Срок хранения резервных химических источников тока ограничен в 10÷15 лет.

Аккумуляторы успешно перезаряжаются приложением внешней электрической энергии. Благодаря этой возможности их называют вторичными источниками тока. Они способны выдерживать сотни и тысячи циклов заряда-разряда. ЭДС аккумулятора может быть в пределах 1,0÷1,5 вольта. Их тоже объединяют в батареи.

Электрохимические генераторы работают по принципу гальванических элементов, но у них для проведения электрохимической реакции вещества поступают извне, а все выделяющиеся продукты удаляются из электролита. Это позволяет организовать непрерывный процесс.

Основные рабочие характеристики химических источников тока

1. Величина напряжения на разомкнутых клеммах

В зависимости от конструкции единичный источник может создавать только определенную разность потенциалов. Для использования в электрических устройствах их объединяют в батареи.

2. Удельная емкость

За определенное время (в часах) один химический источник тока может выработать ограниченное количество тока (в амперах), которые относят к единице веса либо объема.

3. Удельная мощность

Характеризует способность единицы веса или объема химического источника тока вырабатывать мощность, образованную произведением напряжения на силу тока.

4. Продолжительность эксплуатации

Еще этот параметр называют сроком годности.

5. Значение токов саморазряда

Эти побочные процессы электрохимических реакций приводят к расходу активной массы элементов, вызывают коррозию, снижают удельную емкость.

6. Цена на изделие

Зависит от конструкции, применяемых материалов и ряда других факторов.

Лучшими химическими источниками тока считаются те, у которых высокие значения первых четырех параметров, а саморазряд и стоимость низкие.

Принципы заряда аккумуляторов

Среди вторичных химических источников тока большую популярность набирают литий ионные модели, которые стали массово применяться для питания электронных устройств. У них материалом положительного электрода используется LiMO2 (M Co, Ni, Mn), а отрицательного — графит.

При заряде ионы лития от приложенной внешней энергии выделяются из металла катода, проходят через электролит и проникают в пространство между слоями графита, накапливаясь там.

Когда энергия зарядного устройства отсутствует, а к электродам подключена нагрузка, то ионы лития в электролите двигаются в противоположную сторону.

Если заряд и разряд не проводятся, то энергия в аккумуляторе не расходуется, а сохраняется. Но ее количество ограничивается свойствами применяемых материалов. К примеру, у литий-ионных аккумуляторов значение удельной электроемкости составляет 130÷150 мАч/г. Оно лимитировано свойствами материала анода. Для графита емкость выше примерно в два раза.

Ученые сейчас ищут способы повышения емкости аккумулятора, изучают возможности использования химической реакции, проходящей между литием и кислородом воздуха. Для этого разрабатываются конструкции с воздушным, не расходуемым катодом, используемые в отдельных аккумуляторах. Этот метод может до 10 раз увеличить плотность энергии.

Читайте также:  Печи для бани термофор гейзер отзывы

Эксплуатация химических источников тока требует знания основ электротехники, электрохимии, материаловедения и физики твердых тел.

Химические источники тока (сокращенно ХИТ) – это источники электродвижущей силы (ЭДС), в которых в электрическую энергию превращается энергия протекающих внутри химических реакций. Используют их сегодня повсеместно – это и современные электромобили и портативная радиоэлектроника, и медицинское оборудование, и портативные компьютеры.

Все это делает источники тока электрохимические очень важным изобретением, которым пользуются вот уже 2-ю сотню лет. Именно про ХИТ мы подробно и поговорим в сегодняшней статье.

Классификация химических источников тока

Все ХИТ принято подразделять на три основные категории:

  • Первичные гальванические элементы – внутри таких источников происходят химические окислительно-восстановительные реакции, энергия которых и переходит в электрическую. Данные реакции являются необратимыми, поэтому элементы невозможно перезарядить.
  • Состоят такие батареи из двух электродов, которые имеют разный электродный потенциал, металлического проводника, по которому могут перемещаться электроны, и электролита, который помогает перемещению ионов между электродами.

Интересно знать! Напомним, что именно поток электронов и приводит к возникновению электрического тока.

  • Вторичные ХИТ, они же электрические аккумуляторы – тоже являются гальваническими элементами, однако их особенность заключается в том, что возможна перезарядка.
  • В отличие от батарей, которые исчерпывают свою работоспособность при разряде, аккумуляторы могут регенерироваться, то есть повторно накапливать энергию и перезапускать цикл химических реакций.
  • Возобновление заряда происходит при пропускании через элемент электрического тока, для чего нужна внешняя цепь. Все мы ежедневно заряжаем свои телефоны и смартфоны, ноутбуки и планшеты. Аккумуляторы применяются практически везде, и это не удивительно – их ресурс намного выше, чем у любой первичной батареи в сотни раз, при том, что цена больше до 10-ти раз.
  • Прообраз первой аккумуляторной батареи был создан в далеком 1803 году немецким физиком-химиком И. Риттером. Его устройство имело в составе пятьдесят медных кружков, между которыми было проложено влажное сукно. Когда через него проходил ток от Вольтова столба, изделие само становилось источником электрического тока.

  • Последним типом химических источников тока являются топливные элементы, или электрохимические генераторы. Основное отличие их от гальванических элементов это то, что вещества необходимые для электрохимической реакции подаются внутрь извне, а продукты от реакций, наоборот, удаляются.
  • Подобный подход позволяет организовать долгую непрерывную работу без фактической перезарядки.
  • Впервые применять топливные источники тока стали во второй половине 20-го века, несмотря на то, что основные принципы функционирования были открыты в далеком 1839 году. В 1965 году их впервые задействовали в космической технике – это был элемент КК «Джемини». Его изначальное расчетное время работы составляло от суток, до 2-х месяцев. Эти элементы имели достаточное преимущество перед солнечными батареями с буферными химическими батареями в плане массы и габаритов, а также удельной мощности.
  • Первая топливная батарея КК «Джемини» состояла из 3 блоков по 32 элемента, каждый из которых выдавал напряжение в 0,8В, и работала на газообразном топливе (кислород и водород).

Характеристики гальванических источников тока

Характеристика химических источников тока включает в себя следующие параметры:

  • Электродвижущая сила – этот параметр гальванического элемента зависит от состава используемого электролита и типов металлов, из которых изготовлены электроды. Описывают ЭДС термодинамические функции (уравнение Нернста), приложенные к протекающим электрохимическим процессам.

  • Емкость элемента питания – тут все просто, имеется в виду количество энергии, которое элемент может отдать при разряде. Данный параметр напрямую зависит от массы запасенного в батарее реагентов и скорости их превращения. Емкость элемента будет снижаться, если элемент будет охлажден, либо вырастет ток разряда.
  • Энергия гальванического элемента. Этот параметр высчитывается путем перемножения емкости на выдаваемое напряжение. Энергия будет уменьшаться по мере роста разрядного тока. Обратный эффект будет достигнут при росте температуры (до определенного уровня) и увеличении используемых реагентов.

  • Сохраняемость – по сути, срок годности элемента, в течение которого он способен не менять своих основных характеристик в допустимых пределах.

Совет! Чем выше температура, тем быстрее сокращается срок хранения.

  • Плотность энергии – количество запасенной энергии в расчете на единицу массы аккумулятора или его объема.
  • Саморазряд первичного химического источника тока – очень важный параметр, указывающий на потерю емкости батареей без подключенной к ней нагрузки. То есть параметр фактически сопоставим со сроком службы элемента.
  • Саморазряд химических источников тока вторичных, по сути, то же самое, однако этот параметр меняется во времени. Особенно высоко его значение после полной подзарядки аккумулятора, но по мере разрядки он ослабевает.

Интересно знать! Для никель-кадмиевых аккумуляторов, функционирующих исправно, не допускается потеря более 10% от максимального заряда за 1 сутки. Никель-металлгидридные имеют меньший показатель, а у литий-ионных этот эффект практически отсутствует, растягиваясь на месяцы. Герметичные кислотные аккумуляторы потеряют за год всего 40% своего заряда, однако, если температура воздуха будет выше 20 градусов, процесс потечет куда быстрее, и наоборот, приближаясь к нулю – будет замедляться.

Более подробное строение элементов

Мы уже дали определение химических источников тока и назвали их основные типы. Теперь давайте рассмотрим немного глубже, как они устроены, и какие химические реакции внутри протекают.

  • Итак, начнем с первичных гальванических элементов. В их состав входят реагенты (окислители и восстановители), которые участвуют в прямом преобразовании энергии. Выработка тока прекращается после того, как реагенты полностью израсходуются.
  • В качестве примера того, как функционирует элемент, давайте опишем давно известное устройство Даниэля-Якоби. Выше представлена его схема.
  • Итак, два электрода (цинковый и медный) опущены в колбы наполненные растворами сульфатов цинка и меди, соответственно.
  • Растворы разъединены внутренней цепью (полупроницаемой перегородкой), а электроды соединяются внешней цепью (металлический проводник) через гальванометр, обозначенный на схеме как 2.

  • Когда цепь замкнута, на обоих электродах протекают процессы гидратации ионов металлов. Между самим металлом и его ионами в растворе устанавливается химическое равновесие.
  • В связи с тем, что цинк и медь имеют разную активность электродных потенциалов, электроды приобретают разный заряд по величине, то есть концентрация свободных электронов на них будет значительно отличаться.
  • Как только будет замкнута внешняя цепь, концентрация электронов придет в равновесие и они по внешнему проводнику начнут перемещаться от цинкового электрода к медному.
  • По этой причине концентрация электронов на цинковом электроде начинает уменьшаться, из-за чего происходит смещение равновесия на границе Zn|ZnSO4 в сторону катионов цинка (их образования). Другими словами цинк начинает растворяться.
  • С медным электродом происходит обратный процесс – равновесие смещается в другую сторону и начинает образовываться металлическая медь, или другими словами – медь начинает восстанавливаться.
  • Если говорить более конкретно, то на цинковом электроде происходит процесс окисления, который в электрохимии называется анодным процессом, а сам электрод – анодом. На медном электроде (катоде) – процесс восстановления, называемый еще катодным.
Читайте также:  Конденсат в железном гараже что делать

  • Наиболее широко распространились элементы питания, состоящие из марганца и цинка. Они не содержат раствора электролита, поэтому называются сухими.
  • Эти элементы при всем конструкционном многообразии делят всего лишь на два типа, в зависимости от рН электролита и состава: солевые и щелочные. Для солевых марганцево-цинковых элементов (МЦ) используется электрохимическая схема Лекланше (Zn|NH4Cl|MnO2) – в качестве катода выступает цинковый электрод, в качестве анода – электрод их диоксида марганца и графита, а электролитом является паста из муки или крахмала с раствором хлорида аммония.
  • В щелочных элементах питания применяется другая схема (Zn|KOH|MnO2). При этом электроды делаются из тех же материалов, а в качестве электролита применяется паста из гидроксида калия.
  • Такие элементы обладают большей емкостью, лучше переносят низкие температуры и высокие разрядные токи. Однако они намного сложнее солевых источников, почему и имеют значительно большую цену.
  • Данные элементы имеют многоцелевое назначение и применяются в быту повсеместно. Они могут выступать источниками автономного питания для любой радиоаппаратуры, фотоаппаратов, калькуляторов, различных тестовых приборов, часов, фонариков, для запитки схем Биоса материнских плат персональных компьютеров и прочего.

  • Аккумуляторы, или вторичные химические источники тока – отличает эти элементы то, что благодаря воздействию внешнего тока, электрическая энергия может переходить в химическую, а при подключении внешней цепи происходит обратный процесс.
  • Одним из часто встречающихся типов таких устройств являются свинцовые аккумуляторы, которые также называют и кислотными.
  • В качестве электролита выступает 25-30%-ый раствор серной кислоты, а материалом для электродов служат свинцовые решетки. При взаимодействии этих веществ свинец превращается в следующее соединение — PbSO
  • Процессы, протекающие на аккумуляторных электродах, до сих пор до конца не изучены, что говорит об их высокой сложности. Допускается, что одновременно происходят изменения в твердой фазе и в растворе, с зависимостью скоростей этих реакций от условий поляризации.
  • Применяются такие элементы в основном в качестве источников питания в автомобилях.
  • Помимо кислотных существуют и щелочные аккумуляторы, среди которых больше остальных распространились никель-металлгидридные и никель-кадмиевые устройства, электролитом в которых является гидроксид калия (КОН).
  • Для переносной электроники, например, ноутбуков, планшетов, смартфонов используются в основном литий-ионные аккумуляторы, а также литий-полимерные, обладающие приличной емкостью и отсутствием эффекта памяти.

Про литий-ионные аккумуляторы мы поговорим в отдельной главе, так как эти устройства на сегодня в быту самые часто встречающиеся.

  • Топливные элементы питания, по сути, тоже являются гальваническими, только восстановитель и окислитель находятся вне самого элемента. Они подаются во время работы к электродам раздельно и непрерывно.
  • При работе такого элемента сами электроды не расходуются, как в обычных батарейках.
  • В качестве окислителя обычно применяется кислород (чистый или из воздуха), а в качестве восстановителя – водород, метан и метанол, которые могут быть как в жидком, так и в газообразном состоянии.
  • Электролитом при этом является щелочь.

Литий-ионные аккумуляторные батареи

Теперь, как и обещали, давайте подробно обсудим, что такое литий-ионные аккумуляторы, как они устроены и как ими правильно пользоваться. Тема очень интересная, и поможет не только увеличить объем теоретических знаний, но и практических, которые, к примеру, помогут продлить срок службы вашего телефонного или любого другого аккумулятора.

Строение

  • В качестве катода (отрицательного электрода) используется алюминий, а в качестве анода (положительного электрода) – медь. Выполняются они обычно в виде фольги, в форме цилиндра или продолговатого пакета.
  • Разделяются электроды пористым сепаратором, который пропитал электролитом.

  • Все электроды устанавливаются в прочный корпус и подсоединяются к токосъемным клеммам.
  • Попутно внутри корпуса могут устанавливаться и отдельные устройства, которые призваны продлить срок службы аккумулятора и сделать эксплуатацию безопасной. К таковым относятся:
  1. Устройства, реагирующие на изменения температурного коэффициента изменением сопротивления.
  2. Устройство разрыва контакта между катодом и клеммой, в случае превышения допустимого давления газов внутри.
  3. Предохранительные клапаны, способные сбрасывать аварийное давление.
  • Также используются и внешние устройства электронной защиты, которые также предупреждают аварийный перегрев, перезаряд и короткое замыкание.
  • Конструктивно аккумуляторы изготавливают цилиндрического типа (как обычные батарейки) либо призматического (как в телефонах). В первом случае электроды с сепаратором сворачиваются рулоном, а во втором они накладываются друг на друга.
  • Литий-ионные аккумуляторы абсолютно герметичные устройства, что продиктовано необходимостью защиты от утечки электролита, а также защитой от попадания внутрь паров воды и кислорода, что приводит к выходу элемента из строя.

Принцип работы

Разберем сначала разряд.

  • При подключении во внешнюю цепь заряженного аккумулятора, начинает протекать химическая реакция, благодаря которой образуются свободные электроны, которые, как мы помним, «хотят» попасть на катод. Через электролит им не пройти, поэтому они «отправляются в путь» через внешнюю цепь – так образуется ток, который питает подключенные к источнику устройства.
  • «Улетевшие» электроны оставляют ионы лития (положительно заряженные), которые через электролит направляются к катоду.
  • После полного перемещения электронов, аккумулятор остается разряженным.

Чтобы восполнить запас энергии, процесс нужно обратить вспять. К аккумулятору подключается зарядное устройство, из-за чего электроны устремляются обратно к аноду, пока тот не соберет прежнее количество электронов. Далее цикл может повторяться большое количество раз.

Емкость литий-ионной батареи – это ни что иное, как количество ионов лития, которые могут «прилипнуть» к электродам. Попадают они в кратеры (микроскопические поры на аноде и катоде).

  • Со временем материал электродов начинает деградировать. По этой причине они уже не могут удерживать прежнее количество ионов лития, то есть происходит потеря емкости. Данный процесс будет продолжаться до тех пор, пока элемент полностью не утратит свою работоспособность.
  • Строение литий-ионных аккумуляторов таково, что постоянно требуется контроль за уровнем заряда. С этой целью в симбиозе с ними применяют контроллеры заряда. Эти устройства полностью ведут процесс зарядки, выставляя необходимое напряжение в зависимости от стадии.

  • Процесс зарядки через контроллер протекает обычно в следующей последовательности. Вначале подается ток, составляющий 10% от номинального. Напряжение при этом составляет 2,8 Вольт. Далее происходит увеличение тока при достижении напряжением отметки в 4,2 Вольта. Приближаясь к финалу, ток постепенно ослабевает, но напряжение так и остается на достигнутом уровне.
  • Описанный процесс, в принципе, универсален, но может отличаться в зависимости от типов аккумулятора и применяемого контроллера.

Характеристики аккумуляторов

Изготавливаемые сегодня литий-ионные аккумуляторы бывают двух видов: таблеточные и цилиндрические.

Все они могут иметь следующие рабочие параметры и характеристики:

Ссылка на основную публикацию
Фрезерная приставка для токарного станка своими руками
Приспособления для токарных станков позволяют облегчить некоторые работы и расширить функциональные возможности серийных станков. Приспособления могут быть заводскими, которые выпускают...
Фонтан из цветов своими руками
Что такое фонтан? Сухие строки словарей и других информационных источников повествуют нам о том, что «фонтан» - это слово иностранного...
Фонтанчики на даче фото
Эта статья — о том, как сделать фонтан на даче своими руками. Нам предстоит определиться с тем, какое оборудование нужно...
Фрезерный станок вм 127м технические характеристики
ВМ127М - Станок консольный вертикально-фрезерный Купить станочный подшипник с доставкой Podshipnik@podshipnik.info Технические характеристики: Станки модели вм127м предназначены для фрезерования всевозможных...
Adblock detector