Что такое постоянная времени

Что такое постоянная времени

ПОСТОЯННАЯ ВРЕМЕНИ — величина, характеризующая инерционность динамической системы; имеет размерность времени. Напр., постоянная времени электрической цепи характеризует скорость изменения тока или напряжения в ней при переходном процессе … Большой Энциклопедический словарь

постоянная времени — процесса в разрядном промежутке; постоянная времени Время, в течение которого какой либо определяющий параметр процесса, протекающего в разрядном промежутке, достигает заданной доли от разности между начальным и конечным значениями этого… … Политехнический терминологический толковый словарь

постоянная времени — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN time constant … Справочник технического переводчика

постоянная времени — 3.2 постоянная времени: Величина, характеризующая инерционность динамической системы при изменении регистрируемого сигнала по экспоненциальному закону. Источник: ГОСТ Р 53375 2009: Скважины нефтяные и газовые. Геолого технологические исследования … Словарь-справочник терминов нормативно-технической документации

постоянная времени — величина, характеризующая инерционность динамической системы; имеет размерность времени. Например, постоянная времени электрической цепи характеризует скорость изменения тока или напряжения в ней при переходном процессе. * * * ПОСТОЯННАЯ ВРЕМЕНИ… … Энциклопедический словарь

Постоянная времени — 120) постоянная времени время, отсчитываемое с момента приложения светового воздействия, которое требуется току, чтобы достигнуть уровня (1 1/е) от конечного значения (то есть 63% от конечного значения) (категория 6);. Источник: Приказ ФТС… … Официальная терминология

постоянная времени — laiko pastovioji statusas T sritis automatika atitikmenys: angl. time constant vok. Zeitkonstante, f rus. постоянная времени, f pranc. constante de temps, f … Automatikos terminų žodynas

постоянная времени — vyksmo trukmės konstanta statusas T sritis Standartizacija ir metrologija apibrėžtis Laiko tarpas, per kurį pereinamąjį vyksmą apibūdinantis parametras pakinta e (e = 2,71828…) kartų. atitikmenys: angl. time constant vok. Zeitkonstante, f rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

постоянная времени — trukmės konstanta statusas T sritis fizika atitikmenys: angl. time constant vok. Zeitkonstante, f rus. постоянная времени, f pranc. constante de temps, f … Fizikos terminų žodynas

постоянная времени — [time constant] обобщенный параметр, характеризующий динамические свойства (инерционность) объекта исследования и имеющий размерность времени. Ппостоянная времени широко используется при расчете динамики разных объектов исследования (процессов).… … Энциклопедический словарь по металлургии

Закон изменения множителя зависит от величины. Эта величина имеет размерность времени и называется постоянной времени цепи. Обозначается постоянная времени греческой буквой .

Читайте также:  Место для человека за столом

Через 5 после коммутации любой ток или напряжение цепи достигает 99,3% от своего предельного значения (при t ). В неразветвленной RL- цепи (рис.1.2):

(1.15)

Таким образом, имеем решение для iL(t) при +, т.е. при всех t переходного процесса:

. (1.16)

Определяем напряжение на резисторе R и индуктивности L в переходном режиме:

(1.17)

(1.18)

По формулам (1.17), (1.18) построим графики изменения напряжений от времени t.

Из рис. 1.4 видно, что при любом значении t сумма напряжений uR и uL составляет величину входного напряжения U, что подтверждает второй закон Кирхгофа.

Анализ полученных результатов показывает, что при нулевых начальных условиях в момент t=0+ индуктивность ведет себя как бесконечно большое сопротивление (разрыв цепи), а при t, как бесконечно малое сопротивление (короткое замыкание цепи).

Постоянная времени τ – это время, в течение которого свободная составляющая iсв изменяется ровно в “e” раз. Покажем это. Для этого сравним два значения iсв при произвольном времени t, взятых через время τ:

Таким образом, величина τ определяет скорость протекания переходного процесса в цепи, т.к. через (45)τ он обычно практически заканчивается.

2.Расчет прохождения сигнала через линейные электрические цепи

длительность импульса: 0,4 мс; период сигнала: 1,5 мс; середина импульса: 0,014 мс; максимальное и минимальное значение сигнала: 0,5 и 0 В.

2.1Разложение импульсных колебаний на гармонические составляющие

Результат воздействия на электрическую цепь синусоидального напряжения и тока можно найти при помощи символического метода решения уравнений Кирхгофа. Форма синусоидального напряжения (или тока) на выходе любой линейной электрической цепи остается синусоидальной, а амплитуда напряжений и его начальная фаза изменяются. Поэтому при рассмотрении воздействия на электрические цепи несинусоидальных напряжений (токов) во многих случаях целесообразно представить их в виде некоторой суммы синусоидальных колебаний.

Любое периодическое несинусоидальное колебание можно разложить в бесконечный тригонометрический ряд, состоящий из постоянной составляющей и синусоидальных составляющих различной частоты, амплитуды и фазы. Совокупность этих синусоидальных или гармонических составляющих называется частотным спектром.

Тригонометрический ряд, получающийся при разложении периодических несинусоидальных колебаний, называется рядом Фурье [7, с.7]:

f(t) – несинусоидальная периодическая функция;

Т – период колебаний, т.е. наименьшее время, по истечении которого колебания полностью повторяются, 1/с;

ω1 – скорость изменения фазы (угловая частота) первой или основной гармоники, рад/с;

Читайте также:  Тандыр для чего используется

k – порядковый номер гармоники.

В радиотехнике для определения отклика цепи на негармоническое воздействие f(t) используют косинусную форму ряда Фурье [1, с.276]:

которая связана с рядом Фурье (2.1) следующими соотношениями [1, с.276]:

где Amk –это амплитуда «k»-ой гармоники, функция четная относительно частоты;

φk начальная фаза «k»-ой гармоники, функция нечетная относительно частоты и поэтому может принимать как положительные значения, так и отрицательные;

А – постоянная составляющая воздействия f(t).

Амплитуды всех гармоник разложения (Amk) вместе с постоянной составляющей разложения (А) образуют амплитудно-частотный спектр (АЧС) воздействия f(t).

Начальные фазы всех гармоник разложения (ψk) образуют фазо-частотный спектр (ФЧС) воздействия f(t).

Заданный импульс напряжения выражается в пределах одного периода функцией

0,5,

0,

т.е. мы имеем импульсное напряжение прямоугольной формы с периодом повторения Т и длительностью импульса τИ со смещением середины импульса относительно оси ординат.

Интегрирование проводим в пределах от 0 до, введя перед интегралом множитель 2.

Постоянная составляющая ряда на основании формулы (2.2) будет равна

Рассчитываем коэффициенты (амплитуды гармоник) при косинусных составляющих ряда Фурье, а также начальные фазы гармоник:

Учитывая то, что[2, c.98],

Подставляя численные значения в формулы, получим амплитуды и начальные фазы гармонических составляющих ряда Фурье.

Таким образом рассчитывают периодические колебания функций четных относительно частоты. При смещении момента отсчета времени на любую величину, т.е. при запаздывании или опережении процесса на время t, учитываем смещение середины импульса относительно оси ординат. Смещение периодической функции не изменяет значений амплитуд гармоник. Начальные фазы гармоник изменяются на угол [2,с.276],

где t – время начала переднего фронта импульса.

t=tсмещения= — 0,2+0,014= — 0,186,

т.е. начальные фазы гармонических составляющих сигнала воздействия рассчитываются по формуле:

.

Рассчитаем постоянную составляющую

,

и амплитуды и начальные фазы гармонических составляющих:

для первой гармоники (k=1)

для второй гармоники (k =2)

для третьей гармоники (k =3)

для четвертой гармоники (k =4)

для пятой гармоники (k =5)

для шестой гармоники (k =6)

для седьмой гармоники (k =7)

для восьмой гармоники (k =8)

для девятой гармоники (k =9)

для десятой гармоники (k =10)

Амплитудный и фазовый спектр сигнала воздействия изображен на рис. 2.1

Электрическая цепь RC

Рассмотрим ток в электрической цепи, состоящей из конденсатора ёмкостью C и резистора сопротивлением R, соединённых параллельно.
Значение тока заряда или разряда конденсатора определится выражением I = C(dU/dt), а значение тока в резисторе, согласно закону Ома, составит U/R, где U — напряжение заряда конденсатора.

Читайте также:  Бензиновая воздуходувка hitachi rb24ea

Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Решаем дифференциальное уравнение C(dU/dt)= -U/R

Интегрируем:

Из таблицы интегралов здесь используем преобразование

Получаем общий интеграл уравнения: ln|U| = — t/RC + Const.
Выразим из него напряжение U потенцированием: U = e -t /RC * e Const .
Решение примет вид:

Здесь Const — константа, величина, определяемая начальными условиями.

Следовательно, напряжение U заряда или разряда конденсатора будет меняться во времени по экспоненциальному закону e -t /RC .

Экспонента — функция exp(x) = e x
e – Математическая константа, приблизительно равная 2.718281828.

Постоянная времени τ

Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U, в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения UC и определится выражением:

Тогда напряжение UC на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:

При t = RC, напряжение на конденсаторе составит UC = U(1 — e -1 ) = U(1 — 1/e) .
Время, численно равное произведению RC, называется постоянной времени цепи RC и обозначается греческой буквой τ.

Постоянная времени τ = RC

За время τ конденсатор зарядится до (1 — 1/e)*100% ≈ 63,2% значения U.
За время 3τ напряжение составит (1 — 1/e 3 )*100% ≈ 95% значения U.
За время 5τ напряжение возрастёт до (1 — 1/e 5 )*100% ≈ 99% значения U.

Если к конденсатору емкостью C, заряженному до напряжения U, параллельно подключить резистор сопротивлением R, тогда в цепи пойдёт ток разряда конденсатора.

Напряжение на конденсаторе при разряде будет составлять UC = Ue -t/τ = U/e t/τ .

За время τ напряжение на конденсаторе уменьшится до значения U/e, что составит 1/e*100% ≈ 36.8% значения U.
За время 3τ конденсатор разрядится до (1/e 3 )*100% ≈ 5% от значения U.
За время 5τ до (1/e 5 )*100% ≈ 1% значения U.

Параметр τ широко применяется при расчётах RC-фильтров различных электронных цепей и узлов.

Замечания и предложения принимаются и приветствуются!

Ссылка на основную публикацию
Что такое герц в электричестве
Почему по сей день в энергетической отрасли для передачи и распределения электроэнергии всюду выбраны и остаются принятыми частоты 50 и...
Чертежи летающих моделей планеров
Здесь представлены модели планеров , чертежи и подробное описание моделей. Если вы новичок то советую хотябы внимательно прочитать описание модели...
Чертежи однокомнатной квартиры с размерами
Проект перепланировки квартиры — определяющий этап работ в новой квартире, или перед капитальным ремонтом старой. Он включает план демонтажа, установку...
Что такое дебаркадер на воде
Дебарка́дер (фр. débarcadère , от débarquer — выгружать, высаживать на берег) — элемент транспортной или складской инфраструктуры, предназначенный для непосредственной...
Adblock detector