Что перемещается по оптоволоконному кабелю

Что перемещается по оптоволоконному кабелю

Самой высокой пропускной способностью среди всех существующих средств связи обладает оптическое волокно (диэлектрические волноводы). Волоконно-оптические кабели применяются для создания ВОЛС – волоконно-оптических линий связи, способных обеспечить самую высокую скорость передачи информации (в зависимости от типа используемого активного оборудования скорость передачи может составлять десятки гигабайт и даже терабайт в секунду).

Кварцевое стекло, являющееся несущей средой ВОЛС, помимо уникальных пропускных характеристик, обладает ещё одним ценным свойством – малыми потерями и нечувствительностью к электромагнитным полям. Это выгодно отличает его от обычных медных кабельных систем.

Данная система передачи информации, как правило, используется при постройке рабочих объектов в качестве внешних магистралей, объединяющих разрозненные сооружения или корпуса, а также многоэтажные здания. Она может использоваться и в качестве внутреннего носителя структурированной кабельной системы (СКС), однако законченные СКС полностью из волокна встречаются реже – в силу высокой стоимости строительства оптических линий связи.

Применение ВОЛС позволяет локально объединить рабочие места, обеспечить высокую скорость загрузки Интернета одновременно на всех машинах, качественную телефонную связь и телевизионный приём.

Преимущества ВОЛС

При грамотном проектировании будущей системы (этот этап подразумевает решение архитектурных вопросов, а также выбор подходящего оборудования и способов соединения несущих кабелей) и профессиональном монтаже применение волоконно-оптических линий обеспечивает ряд существенных преимуществ:

  • Высокую пропускную способность за счёт высокой несущей частоты. Потенциальная возможность одного оптического волокна – несколько терабит информации за 1 секунду.
  • Волоконно-оптический кабель отличается низким уровнем шума, что положительно сказывается на его пропускной способности и возможности передавать сигналы различной модуляции.
  • Пожарная безопасность (пожароустойчивость). В отличие от других систем связи, ВОЛС может использоваться безо всяких ограничений на предприятиях повышенной опасности, в частности на нефтехимических производствах, благодаря отсутствию искрообразования.
  • Благодаря малому затуханию светового сигнала оптические системы могут объединять рабочие участки на значительных расстояниях (более 100 км) без использования дополнительных ретрансляторов (усилителей).

  • Информационная безопасность. Волоконно-оптическая связь обеспечивает надёжную защиту от несанкционированного доступа и перехвата конфиденциальной информации. Такая способность оптики объясняется отсутствием излучений в радиодиапазоне, а также высокой чувствительностью к колебаниям. В случае попыток прослушки встроенная система контроля может отключить канал и предупредить о подозреваемом взломе. Именно поэтому ВОЛС активно используют современные банки, научные центры, правоохранительные организации и прочие структуры, работающие с секретной информацией.
  • Высокая надёжность и помехоустойчивость системы. Волокно, будучи диэлектрическим проводником, не чувствительно к электромагнитным излучениям, не боится окисления и влаги.
  • Экономичность. Несмотря на то, что создание оптических систем в силу своей сложности дороже, чем традиционных СКС, в общем итоге их владелец получает реальную экономическую выгоду. Оптическое волокно, которое изготавливается из кварца, стоит примерно в 2 раза дешевле медного кабеля, дополнительно при строительстве обширных систем можно сэкономить на усилителях. Если при использовании медной пары ретрансляторы нужно ставить через каждые несколько километров, то в ВОЛС это расстояние составляет не менее 100 км. При этом скорость, надёжность и долговечность традиционных СКС значительно уступают оптике.

  • Срок службы волоконно-оптических линий составляет полрядка четверти века. Через 25 лет непрерывного использования в несущей системе увеличивается затухание сигналов.
  • Если сравнивать медный и оптический кабель, то при одной и той же пропускной способности второй будет весить примерно в 4 раза меньше, а его объём даже при использовании защитных оболочек будет меньше, чем у медного, в несколько раз.
  • Перспективы. Использование волоконно-оптических линий связи позволяет легко наращивать вычислительные возможности локальных сетей благодаря установке более быстродействующего активного оборудования, причем без замены коммуникаций.

Область применения ВОЛС

Как уже было сказано выше, волоконно-оптические кабели (ВОК) используются для передачи сигналов вокруг (между) зданий и внутри объектов. При построении вешних коммуникационных магистралей предпочтение отдаётся оптическим кабелям, а внутри зданий (внутренние подсистемы) наравне с ними используется традиционная витая пара. Таким образом, различают ВОК для внешней (outdoor cables) и внутренней (indoor cables) прокладки.

К отдельному виду относятся соединительные кабели: внутри помещений они используются в качестве соединительных шнуров и коммуникаций горизонтальной разводки – для оснащения отдельных рабочих мест, а снаружи – для объединения зданий.

Монтаж волоконно-оптического кабеля осуществляется с помощью специальных инструментов и приборов.

Технологии соединения ВОЛС

Длина коммуникационных магистралей ВОЛС может достигать сотен километров (например, при постройке коммуникаций между городами), тогда как стандартная длина оптических волокон составляет несколько километров (в том числе потому, что работа со слишком большими длинами в некоторых случаях весьма неудобна). Таким образом, при построении трассы необходимо решить проблему сращивания отдельных световодов.

Различают два типа соединений: разъёмные и неразъёмные. В первом случае для соединения применяются оптические коннекторы (это связано с дополнительными финансовыми затратами, и, кроме того, при большом количестве промежуточных разъёмных соединений увеличиваются оптические потери).

Для неразъёмного соединения локальных участков (монтажа трасс) применяются механические соединители, клеевое сращивание и сваривание волокон. В последнем случае используют аппараты для сварки оптических волокон. Предпочтение тому или иному методу отдаётся с учётом назначения и условий применения оптики.

Наиболее распространённой является технология склеивания, для которой используется специальное оборудование и инструмент и которая включает несколько технологических операций.

В частности, перед соединением оптические кабели проходят предварительную подготовку: в местах будущих соединений удаляются защитное покрытие и лишнее волокно (подготовленный участок очищается от гидрофобного состава). Для надёжной фиксации световода в соединителе (коннекторе) используется эпоксидный клей, которым заполняется внутреннее пространство коннектора (он вводится в корпус разъёма с помощью шприца или дозатора). Для затвердевания и просушки клея применяется специальная печка, способная создать температуру 100 град. С.

После затвердевания клея излишки волокна удаляются, а наконечник коннектора шлифуется и полируется (качество скола имеет первостепенное значение). Для обеспечения высокой точности выполнение данных работ контролируется с помощью 200-кратного микроскопа. Полировка может осуществляться вручную или с помощью полированной машины.

Читайте также:  Найти электродвигатель по параметрам

Самое качественное соединение с минимальными потерями обеспечивает сваривание волокон. Этот метод используется при создании высокоскоростных ВОЛС. Во время сваривания происходит оплавление концов световода, для этого в качестве источника тепловой энергии могут использоваться газовая горелка, электрический заряд или лазерное излучение.

Каждый из методов имеет свои преимущества. Лазерная сварка благодаря отсутствию примесей позволяет получать самые чистые соединения. Для прочной сварки многомодовых волокон, как правило, используют газовые горелки. Наиболее распространенной является электрическая сварка, обеспечивающая высокую скорость и качество выполнения работ. Длительность плавления различных типов оптовых волокон отличается.

Для сварочных работ применяются специальный инструмент и дорогостоящее сварочное оборудование – автоматическое или полуавтоматическое. Современные сварочные аппараты позволяют контролировать качество сварки, а также проводить тестирование мест соединения на растяжение. Усовершенствованные модели оснащены программами, которые позволяют оптимизировать процесс сварки под конкретный тип оптоволокна.

После сращения место соединения защищается плотно насаживаемыми трубками, которые обеспечивают дополнительную механическую защиту.

Ещё один метод сращивания элементов оптоволокна в единую линию ВОЛС – механическое соединение. Этот способ обеспечивает меньшую чистоту соединения, чем сваривание, однако затухание сигнала в данном случае всё-таки меньше, чем при использовании оптических коннекторов.

Преимущество этого метода перед остальными состоит в том, что для проведения работ используются простые приспособления (например, монтажный столик), которые позволяют проводить работы в труднодоступных местах или внутри малогабаритных конструкций.

Механическое сращивание подразумевает использование специальных соединителей – так называемых сплайсов. Существует несколько разновидностей механических соединителей, которые представляют собой вытянутую конструкцию с каналом для входа и фиксации сращиваемых оптических волокон. Сама фиксация обеспечивается с помощью предусмотренных конструкцией защёлок. После соединения сплайсы дополнительно защищаются муфтами или коробами.

Механические соединители могут использоваться неоднократно. В частности, их применяют во время проведения ремонтных или восстановительных работ на линии.

ВОЛС: типы оптических волокон

Оптические волокна, используемые для построения ВОЛС, отличаются по материалу изготовления и по модовой структуре света. Что касается материала, различают полностью стеклянные волокна (со стеклянной сердцевиной и стеклянной оптической оболочкой), полностью пластиковые волокна (с пластиковой сердцевиной и оболочкой) и комбинированные модели (со стеклянной сердцевиной и с пластиковой оболочкой). Самую лучшую пропускную способность обеспечивают стеклянные волокна, более дешёвый пластиковый вариант используют в том случае, если требования к параметрам затухания и пропускной способности не критичны.

По типу путей, которые проходит свет в сердцевине волокна, различают одно- и многомодовые волокна (в первом случае распространяется один луч света, во втором – несколько: десятки, сотни и даже тысячи).

  • Одномодовые волокна (SM) отличаются малым диаметром сердцевины, по которой может пройти только один пучок света.

  • Многомодовые волокна (MM) отличаются большим диаметром сердцевины и могут быть со ступенчатым или градиентным профилем. В первом случае пучки света (моды) расходятся по различным траекториям и поэтому приходят к концу световода в различное время. При градиентном профиле временные задержки различных лучей практически полностью исчезают, и моды идут плавно благодаря изменению скорости распространения света по волнообразным спиралям.

Все современные ВОК (и одно-, и многомодовые), с помощью которых создаются линии передачи данных, имеют одинаковый внешний диаметр – 125 мкм. Толщина первичного защитного буферного покрытия составляет 250 мкм. Толщина вторичного буферного покрытия составляет 900 мкм (используется для защиты соединительных шнуров и внутренних кабелей). Оболочка многоволоконных кабелей для удобства работы окрашивается в различные цвета (для каждого волокна).

Диагностика волоконно-оптических линий связи

Основным инструментом для диагностики волоконно-оптических линий связи является оптический рефлектометр. Пример работы с таким прибором смотрите в следующем видео:

Примеры оборудования

Материал подготовлен
техническими специалистами компании “СвязКомплект”.

Всем привет и сегодня речь у нас поёдет о не особо известных, но широко применяемых оптоволоконных связях. По-другому их можно ещё называть как ВОЛС или волоконно-оптические линии связи. Достаточно длинное название, поэтому в широких кругах чаще используется простое сокращение как «оптика» или «оптоволокно». На самом деле это не совсем одно и тоже, но обо всё по порядку.

ВОЛС — это специализированные линии связи, по которым передача информации идёт путём светового пучка в определённой кодировке. Эту технологию в первую очередь применяют для передачи данных в локальных и глобальных сетях на достаточно большое расстояние. Но её также используют и в военной промышленности, медицине и в других не сетевых сферах.

Принцип действия

И так мы уже разобрались, что такое ВОЛС, но каким же образом по ним передаётся информация. В подобных сетях используется оптоволокно. Оно состоит из центральной жили и имеет небольшой размер. Жила обычно сделана как вы, наверное, уже догадались из стекла. Именно по жиле и идёт передача данных пучком света.

Но тут сразу же встаёт вопрос – а как увеличить передачу на большее расстояние? Для этого используют второй слой стекла, который обволакивает центральную жилу и при передаче информации отражает свет. Ранее думали использовать в качестве отражения зеркала или подобие зеркальных поверхностей – но как оказалось, такой материал был бы очень дорогим.

Вы когда-нибудь бывали на море или озере в лучах заката. Помните, как свет от солнца под большим углом отражался от воды. Хотя как вы, наверное, знаете, вода прозрачная. Но при увеличении угла и плотности между двумя материалами – свет начинает отражаться от разных сред.

Читайте также:  Как сделать поделку животного своими руками

Именно эту технологию и используют в оптоволоконной связи. Сердечник и внешняя оболочка имеют разную плотность и структуру, из-за чего луч света, отражаясь, распространяется куда дальше. Для передачи и воспроизведения света используется полупроводниковый или диодный лазер.

Если окунуться в историю, то первыми трудами, который заложили основу «оптики» – было исследование Даниелем Колладоном и Жаком Бабинеттом. Они в первую очередь изучали возможности преломления света. Но если быть точнее, то прародителем стал Кларенс Хаснелл – он в первые применил свет для передачи изображения через специальные трубки.

Отличие от витой пары

Если окунуться в 2000-е годы, то возможно кто-то вспомнит, что тогда в России и других странах СНГ использовался только интернет по типу aDLS. Когда интернет пришёл в РФ, то страна была просто не готова к этому. По всей стране не было ничего подходящего, чтобы передавать информацию от компьютера к компьютеру.

Именно тогда пришла идея использовать старые телефонные провода. Напомню, что это обычные два проводка без оплётки и дополнительной защиты. В результате интернет всё же появился, но имел очень маленькую скорость. Также многие жаловались, на лаги, прерывания, постоянное отваливающийся интернет.

Все эти проблемы были связаны как раз со способом передачи информации. По двум проводкам без оплётки очень сложно было передавать данные – так как при передаче многие пакеты терялись или изменялись в результате помех от электромагнитных волн. На смену телефонным линиям пришла витая пара.

Витая пара — это скрученные пары проводов во одной внешней оплётке. Чаще всего используется именно витая пара с 4 парами (8 проводков). Данный вид коммуникации уже стал намного надёжнее телефонного кабеля. В качестве защиты от радиоволн придумали нехитрую штуку – а именно скручивание.

По одной паре передаётся одна и та же информация. При скручивании провод постоянно меняет своё положение. В результате первый проводок находится с внешней стороны и принимает весь удар окружающей среды. Второй провод прячется за него. Так передаваясь, информация по паре проводов в конце складывается. В результате также вычитается помехи.

Скорость при это выросла в несколько раз. Но была проблема быстрого затухания сигнала. Подобные провода могут бить до 100 метров, не дальше. А при увеличении скорости будет падать и диапазон действия.

Вот тут на смену пришла оптоволоконная связь. Скорость выросла ещё сильнее, но также увеличилось дальность отправки пакета. Если раньше приходилось каждые 100 метров устанавливать повторители, то при передаче с помощью «оптики» дальность стала больше на несколько километров.

Но что самое интересное – волоконная связь почти полностью защищена от электромагнитного воздействия. Также подобные провода почти неподвержены температурным скачкам и могут работать как в сильную жару, так и в дикий холод.

Частота передачи с помощью света выше поэтому минимальная скорость начинается от 1 Гбит в секунду. При передаче в витой паре при задействовании всех пар скорость будет 1 Гбит в секунду. Но при этом провод будет очень дорогим, так как для достижения такого результата нужно защитить каждый провод «экраном» от воздействия внешней среды.

К недостаткам ВОЛС можно отнести только сложность в монтаже и сварке. Для этого нужно специальное оборудования и знания. При «сварке» или по-другому соединении двух оптических кабелей – нужно добиться идеального соединения между центральными жилами и внешним стеклом. Иначе свет будет затухать именно на этом участке или коэффициент преломления будет не правильным.

Передача данных в сетях

Все происходит аналогично. Изначально отправительное устройство кодирует информацию в виде пакетов. Далее данные переводятся в тот формат, который можно передать с помощью света через ВОЛС. После этого информация отправляется по линиям связи. Почти моментально она доходит до приёмника. Ему же остаётся перевести данные в формат, понятный для компьютера, коммутатора, роутера или другого сетевого оборудования.

Сегодня оптоволоконные сети есть почти во всех городах. Подключение домов имеет непосредственно через «оптику». Кабель идёт к центральному коммутатору. Далее от него с помощью витой пары провода идут в каждый дом. Сейчас некоторые провайдеры начали подключать клиентов по оптоволокну. То есть вместо той же витой пары – используется «стекло».

Скорость на таких соединениях выше. При этом вырастает и качество связи и интернета. Из-за более высокой надёжности – значение отклика ниже и лагов меньше. Но тут нужно учитывать, что для подключения такого кабеля нужны специальные маршрутизаторы.

Большинство технических специалистов, работающих с оптоволокном, знают об отличии многомодовых волокон от одномодовых. Но не все информированы о характеристиках оптических волокон и о протоколах передачи информации по ним. В статье приведены описания конкретных характеристик оптоволокон и протоколов передачи Ethernet, вызывающих, иногда, противоречивые толкования.

Характеристики оптических волокон

Пожалуй, не найдется специалиста-кабельщика, работающего с оптическим волокном, который не знал бы отличие многомодовых волокон от одномодовых. Мы не собираемся повторять прописные истины в данной статье. Остановимся на конкретных характеристиках оптоволокон, вызывающих, подчас, противоречивое толкование.

Оптические волокна допускают распространение сигналов передачи данных вдоль них при условии, что световой сигнал вводится в волокно под углом, обеспечивающим полное внутреннее отражение на границе раздела двух сред из двух типов стекла, имеющего различные показатели преломления. В центре сердцевины находится особо чистое стекло с показателем преломления 1.5. Диаметр сердцевины находится в пределах от 8 до 62,5 мкм. Окружающее ядро стекло, называемое оптической оболочкой, немного менее свободное от примесей, имеет показатель преломления 1.45. Общий диаметр сердцевины и оболочки находится в пределах от 125 до 440 мкм. Поверх оптической оболочки наносят полимерные покрытия, укрепляющие волокно, защитные нити и внешнюю оболочку.

Читайте также:  Телевизор со смартом что это

При вводе оптического излучения в волокно, луч света, падающий на его торец под углом больше критического, будет распространяться вдоль границы раздела двух сред в волокне. Каждый раз, когда излучение попадает на границу между ядром и оболочкой, оно отражается обратно в волокно. Угол ввода оптического излучения в волокно определяется максимально допустимым углом ввода, называемым числовой апертурой или апертурой волокна. Если вращать этот угол вдоль оси сердцевины, формируется конус. Любой луч оптического излучения, падающий на торец волокна в пределах этого конуса, будет передан дальше по волокну.

Находясь внутри сердцевины, оптическое излучение многократно отражаетсяот границы раздела двух прозрачных сред, имеющих различные показатели преломления. Если физические размеры сердцевины оптического волокна существенные, отдельные лучи света будут введены в волокно и, в последующем, претерпевают отражение под разными углами. Поскольку ввод лучей оптической энергии в волокно был осуществлен под разными углами, то и расстояния, которые они проходят, будут также различными. В результате, они достигают приемного участка волокна в разное время. Импульсный оптический сигнал, прошедший по волокну будет расширен, по сравнению с тем, который был отправлен, следовательно, ухудшается и качество переданного по оптоволокну сигнала. Это явление получило название модовой дисперсии (DMD).

Другой эффект, который тоже вызывает ухудшение передаваемого сигнала, получил название хроматической дисперсии. Хроматическая дисперсия обусловлена тем, что световые лучи разных длин волн распространяютсявдоль оптического волокна с различной скоростью. При передаче серии световых импульсов через оптоволокно, модовая и хроматическая дисперсии, в конечном итоге, могут вызвать слияние серии в один длинный импульс, возникновению интерференции бит сигнала и потере передаваемых данных.

Еще одной типичной характеристикой оптического волокна является затухание. Стекло, используемой для изготовления сердцевины оптического волокна (ОВ), является очень чистым, но, все же, не идеально. В результате, свет может поглощаться материалом стекла в оптоволокне. Другими потерями оптического сигнала в волокне могут быть рассеяние и потери, а также затухание от плохих оптических соединений. Потери при соединении оптоволокон могут быть вызваны смещением сердцевин волокна или его торцевых поверхностей, которые не были отполированы и очищеныдолжным образом.

Сетевые протоколы для оптической передачи Ethernet

Перечислим основные протоколы передачи Ethernet по многомодовым и одномодовым оптическим волокнам.

10BASE-FL — 10 Мбит/с передача Ethernet по многомодовому оптоволокну.

100BASE-SX — 100 Мбит/с передача Ethernet по многомодовому ОВ на длине волны850-nm. Максимальное расстояние передачи до 300 м. Большие расстояния передачи возможны при использовании одномодового ОВ. Обратно совместимый с 10BASE-FL.

100BASE-FX — 100 Мбит/с передача Ethernet (Fast Ethernet) по многомодовому ОВ на длине волны 1300-nm. Максимальное расстояние передачи составляет до 400 м для полудуплексных соединений (с обнаружением коллизий) или до 2 км для полнодуплексной связи. Большие расстояния возможны с применением одномодового ОВ. Не обратно совместим с протоколом 10BASE-FL.

100BASE-BX — 100 Мбит/с передача Ethernet по одномодовому ОВ. В отличие от протокола 100BASE-FX, в котором используются два оптоволокна, 100BASE-BX работает по одному волокну с технологией WDM (Wavelength-Division Multiplexing), которая позволяет разделить длины волн сигнала на приеме и передаче. Для передачи и приема используются две длины волны из возможных: 1310 и 1550 nm или 1310 и 1490 nm. Расстояние передачи до 10, 20, или 40 км.

1000BASE-SX — 1 Гбит/с передача Ethernet (Gigabit Ethernet) по многомодовому ОВ на длине волны 850-nm и на максимальное расстояние до 550 м, в зависимости от используемого класса ОВ.

1000BASE-LX — 1 Гбит/с передача Ethernet (GigabitEthernet) по многомодовому ОВ на длине волны 1300-nm на максимальное расстояние до 550 м. Протокол оптимизирован для передачи на большие расстояния (до 10 км) по одномодовому ОВ.

1000BASE-LH— — 1 Гбит/с передача Ethernet по одномодовому ОВ на максимальное расстояние до 100 км.

10GBASE-SR — 10 Гбит/с передача Ethernet (10 GigabitEthernet) по многомодовому ОВ на длине волны over 850-nm. Расстояние передачи может быть 26 м или 82 м, в зависимости от типа применяемого ОВ с сердцевиной 50- или 62.5 мкм. Поддержка передачи на расстояние 300 м по многомодовому ОВ класса ОМ3 и выше, с коэффициентом широкополосности не менее 2000 MГц/км.

10GBASE-LX4 — 10 Гбит/с передача Ethernetпо многомодовому ОВ на длине волны 1300-nm. Использует технологию WDM для передачи на расстояния до 300 м по многомодовым волокнам. Поддержка передачи по одномодовому ОВ на расстояния до 10 км.

В заключение статьи, приведем некоторые данные по используемым типам многомодовых оптических волокон и стандартам передачи. Данные сведены в табл.1 (выдержки из Стандартов).

Международный Стандарт: ISO/IEC 11801 “GenericCablingforCustomerPremises”

МеждународныйСтандарт: IEC 60793-2-10 “Product Specifications — Sectional Specification for Category A1 Multimode Fibers”

Стандарт ANSI/TIA/EIA-492-AAAx “Detail Specification for Class 1a Graded-Index Multimode Optical Fibers”

(1) класс OM1 многомодовое ОВ с сердцевиной 62.5-мкм или 50-мкм.

(2) класс OM2 многомодовое ОВ с сердцевиной 50-мкм или 62.5-мкм.

(3) класс OM4 ратифицирован IEEE в июне 2010 и является Стандартом 802.ba для 40G/100G Ethernet. Работает на расстояниях до 1000 м по 1 Гбит/с Ethernet, 550 м по 10 Гбит/с Ethernet и 150 м по 40 ГБит/с и 100 ГБит/с сетевым протоколам Ethernet.

(4) Международный Стандарт ISO/IEC 11801 определяет максимальное значение затухания ОВ. Стандарты IEC и TIA описывают(минимальное) или среднее затухание «голого» ОВ.

Источник: Евгений Запорощенко, к.т.н., доцент, главный технический специалист ООО «Сонет Инвест»

Ссылка на основную публикацию
Чертежи летающих моделей планеров
Здесь представлены модели планеров , чертежи и подробное описание моделей. Если вы новичок то советую хотябы внимательно прочитать описание модели...
Череповецкий государственный университет факультеты
Университет Лицензия на право ведения образовательной деятельности Серия 90Л01 № 009398 от 12.08.2016, регистрационный № 2331 Приемная комиссия ЧГУ: Вологодская...
Черешня дачница описание сорта фото отзывы
Описание Дерево раннего срока созревания (с середины июня). Данный сорт черешни растёт интенсивно и образует раскидистую крону средней густоты. Плоды...
Чертежи однокомнатной квартиры с размерами
Проект перепланировки квартиры — определяющий этап работ в новой квартире, или перед капитальным ремонтом старой. Он включает план демонтажа, установку...
Adblock detector