Цепи несинусоидального периодического тока
Цепями периодического несинусоидального тока называются цепи токи в ветвях которых или напряжения на ветвях которых носят несинусоидальный периодический характер. Причинами возникновения в электрических цепях несинусоидальных периодических токов являются
1.Несовершенство (неидеальность) источников синусоидальных напряжений и токов.
2. Наличие в ветвях эл. цепей генераторов напряжений и токов специальной формы ( прямоугольной, пилообразной, трапециедальной и т.п.)
3. Наличие нелинейных элементов в ветвях эл. цепей.
1. Представление несинусоидальных напряжений и токов рядами Фурье
Из курса математики известно, что любую несинусоидальную периодическую функцию F ( w t ) удовлетворяющую условиям Дирихле, т.е. имеющую за полный период конечное число максимумов, минимумов и разрывов первого рода, можно представить в виде ряда Фурье
где К=1, 2, 3….или представить в виде суммы бесконечного числа гармонических составляющих с частотами целыми и кратными основной частоте w . При этом все амплитудные коэффициенты ряда определяются формулами Эйлера -Фурье
;
;
.
Для основных типов периодических функций, имеющих прямоугольную, треугольную, трапециевидную и др. формы, выражения для коэффициентов ряда Фурье приводятся в справочниках. Примеры разложений несинусоидальных периодических сигналов типовых форм приведены на рис.10.1.
В тех случаях, когда представить аналитически несинусоидальную функцию не представляется возможным или она задана в виде графика (или осциллограммы), амплитудные коэффициенты ряда можно получить графо-аналитически.
Этот метод основан на замене определенного интеграла суммой конечного числа слагаемых. Для этого период функции f( w t)=f(x) разбивается на n равных отрезков D X=2 p /n, как показано на рис.10.2. и находятся значения функции f(x) в середине каждого интервала.
После этого вычисляют коэффициенты ряда по формулам
;
;
,
где f p (x), Cos p kx , Sin p kx -значение функции f(x), Cos kx и Sin kx в середине р-го интервала или
f p (x)= f(x) Ѕ x=(p-0.5) D x, Cos p kx= Coskx Ѕ x=(p-0.5) D x, Sin p kx= Sinkx Ѕ x=(p-0.5) D x.
После тривиальных преобразований ряд (10.1) можно переписать в виде
,
где ,
.
Таким образом после разложения аналитического или графо-аналитического периодические несинусоидальные ток и напряжение можно представить в виде
i = I 0 + I 1m sin( w t + y i 1 ) + I 2m sin(2 w t + y i 2 ) + ј + I rm sin(k w t + y i k ))+ ј , (10.3)
u = U 0 + U 1m sin( w t + y u1 ) + U 2m sin(2 w t + y u2 ) + ј + U km sin(k w t + y uk ))+ ..10.4)
Первыe члены рядов (10.3) и (10.4) ( I 0, U 0 ) называются постоянными составляющими или нулевыми гармоникми. Вторые члены I 1m sin( w t + y i 1 ) и U 1m sin( w t + y u1 ) имеют частоту равную частоте несинусоидальной периодической функции f( w t ) и называются первыми или основными гармоническими составляющими (коротко — гармониками). Остальные члены ряда вида A k sin( k w t + y k ) имеют частоты в целое число раз k больше частоты основной гармоники и называются высшими гармоническим составляющими или гармониками . Каждая высшая гармоника в отдельности именуется по номеру k , т.е. вторая гармоника, третья гармоника и т.д.
2. Мгновенные, средние и действующие значение несинусоидальных периодических величин.
Выражение (10.3) и (10.4) характеризуют мгновенные значения несинусоидальных тока и напряжения.
При несинусоидальных периодических токах и ЭДС в электрической цепи возможно ввести понятия действующих значений аналогично тому, как это было сделано для синусоидальных величин.
Действующее значение тока I определяется через мгновенные значения как
Если представить периодический несинусоидальный ток в виде (10. 3 ) и подставить в (10.5), то после интегрирования получим
Следовательно, действующее значение несинусоидального периодического тока равно корню квадратному из суммы квадратов постоянной составляющей и действующих значений всех гармоник.
Проведя аналогичные выкладки, можно получить выражения для действующих значений ЭДС и падения напряжения в виде
,
.
Средние за период значения несинусоидальных напряжений и токов определяются интегралом за период от соответствующего мгновенного значения и если последние представлены в виде соответственно ( 10. 3 ) и (10.4 ), то
.
Как видно, средние за период значения несинусоидальных периодических величин равны их постоянным составляющим.
Средние по модулю или средние за положительный полупериод значения несинусоидальных напряжений и токов определяются интегралом за период от соответствующего мгновенного значения и если последние представлены в виде соответственно (10. 3 ) и (10.4 ), то
.
3. Оценка формы кривых несинусоидальных периодических величин
Как уже упоминалось выше, реальные источники электрической энергии в силу конструктивных особенностей формируют ЭДС и токи, отличающиеся от синусоидальных. Чаще всего эти величины симметричны, т.к. симметрична конструкция электромеханических генераторов, и не содержат четных гармоник.
Для оценки формы симметричных кривых используют коэффициенты формы k f , амплитуды k A и искажений k d .
Под коэффициентом формы k ф понимают отношение действующего значения к среднему значению, взятому за положительную полуволну, т.е.
K ф = U /U ср мод.
Для синусоидальных величин k ф » 1.11.
Под коэффициентом амплитуды k A понимают отношение амплитудного значения несинусоидальной величины к действующему, т.е.
(для синусоиды это значение равно 1.414)
Коэффициент искажений k и это отношение действующего значения основной гармоники к действующему значению несинусоидальной кривой, т.е.
Поскольку идеальных синусоидальных величин практически не бывает, то в технике существует понятие практически синусоидальных кривых. Форма кривой считается практически синусоидальной, если все ее ординаты отличаются от ординат первой гармоники не более, чем на 5%. При этом количество контрольных точек должно быть не менее 12.
4. Мощность в цепях несинусоидального тока
Определим теперь среднюю мощность P в цепи при несинусоидальных токах и напряжениях. Она всегда может быть выражена в виде
Подставляя в это выражение напряжение и ток, представленные выражениями (10. 3 ) и ( 10. 4 ), получим
P=U 0 I 0 + U 1 I 1 Cos j 1 +…+ U k I k Cos j k +…,
где j k = y uk — y i k -фазовый сдвиг между к-ми гармониками напряжения и тока.
Из выражения (10.7) следует, что средняя или активная мощность в цепи с несинусоидальными токами и напряжениями равна сумме средних или активных мощностей отдельных гармоник .
По аналогии с цепями синусоидального тока можно ввести понятие полной или кажущейся мощности как произведение действующих значений тока и напряжения S = UI , тогда отношению P /( UI ) можно придать смысл коэффициента мощности cos j э .
Выражение нормально справедливо для некоторой электрической цепи синусоидального тока, в которой протекает ток с действующим значением I и существует падение напряжения U . При этом в цепи выделяется активная мощность P . Следовательно, при изучении некоторых явлений несинусоидальные токи и напряжения, не содержащие постоянных составляющих, можно заменить эквивалентными им по действующему значению синусоидальными со сдвигом фаз между ними j э , соответствующим коэффициенту мощности несинусоидальных величин .
Для цепи несинусоидального тока реактивную мощность определить формально по аналогии с активной мощностью в виде
Q = U 1 I 1 sin j 1 + U 2 I 2 sin j 2 + ј + U k I k sin j k + FACE="Symbol" SIZE=4>ј
Без доказательства отметим, что в цепях несинусоидального тока не существует связи между активной, реактивной и полной мощностью в виде треугольника мощностей , т.е..
5. Расчет линейных ЭЦ с источниками периодических несинусоидальных напряжений и токов
Если все элементы электрической цепи с несинусоидальными токами и напряжениями линейны, т.е. параметры элементов не зависят от токов и падений напряжения, то анализ электромагнитных процессов в них можно проводить, используя разложение в ряды Фурье.
Расчет цепи при несинусоидальных токах проводится аналогично расчету при синусоидальных, но он должен выполняться отдельно для каждой гармоники, т.е. алгоритм расчета следующий:
-представить действующую в цепи ЭДС или ток рядом Фурье
-любыми методами расчета цепей синусоидального тока произвести расчет отдельно для каждой гармоники спектра;
-по полученному спектру искомых величин найти требуемые значения.
Пусть требуется найти активную мощность в цепи на рис.10.3 , где приложенное напряжение равно u ( t )=10+20sin(1000 t — 30 ° )+5sin(3000 t +45 ° ) В, а параметры элементов R = 20 Ом, C = 50 мкФ и L = 5 мГн.
Спектр приложенного напряжения содержит постоянную составляющую или нулевую гармонику, а также первую и третью гармоники.
Реактивные сопротивления цепи зависят от частоты. Для k -й гармоники их можно представить через сопротивления на частоте основной гармоники в виде
X Lk =k w 1 L=kX L1 ; X Ck =1/k w 1 C=X c1 /k;
где x L 1 = w 1 L = 5 Ом и x C 1 = 1/( w 1 C ) = 20 Ом — индуктивное и емкостное сопротивления на частоте основной гармоники. При расчете реактивных сопротивлений можно формально считать постоянную составляющую нулевой гармоникой. При этом x L 0 = 0, а x C 0 = µ , что соответствует отсутствию этих элементов и вполне согласуется с теорией цепей постоянного тока, где в статических режимах реактивных элементов нет.
Общее комплексное сопротивление цепи на частоте k -й гармоники будет
Подставляя в это выражение значения k = 0, 1, 3, получим значения общих комплексных сопротивлений на всех гармониках в виде Z 0 = 20 Ом ; Z 1 = 10 — j 5 Ом ; Z 3 = 2+ j 9 Ом . Из этих выражений видно, что комплексные сопротивления на разных частотах могут иметь реактивную составляющую разного знака. Отсюда комплексные значения токов — I 0 = U 0 / Z 0 = 10/20 = 0.5 А;
m 1 =
m 1 / Z 1 = 20 e — j 30 ° /(10 — j 5) = 1.78 e — j 3.4 ° А;
m 3 = Um 3 / Z 3 = 5 e j 45 ° /(2+ j 9) = 0.54 e — j 32.4 ° А.
Полученные комплексные значения составляющих спектра токов можно представить рядом Фурье в виде
i = 0.5+1.78sin(1000 t — 3.4 ° )+0.54sin(1000 t — 32.4 ° ) А.
Теперь можно определить активную мощность в цепи как
P=U 0 I 0 + U 1 I 1 Cos j 1 + U 3 I 3 Cos j 3 =
10 ґ 0.5+ (20 ґ 1.78/2) ґ Cos[-30 o –(-3.4 o )]+ (5 ґ 0.54/2) ґ Cos[45 o –(-32.4 o )]=22.2 Вт
Периодическими несинусоидальными токами и напряжениями называют токи и напряжения, изменяющиеся во времени по периодическому несинусоидальному закону.
Они возникают при четырех различных режимах работы электрических цепей (и при сочетаниях этих режимов):
1) когда источник ЭДС (источник тока) дает несинусоидальную ЭДС (несинусоидальный ток), а все элементы цепи — резистивные, индуктивные и емкостные — линейны, т. е. от тока не зависят;
2) если источник ЭДС (источник тока) дает синусоидальную ЭДС (синусоидальный ток), но один или несколько элементов цепи нелинейны;
3) когда источник ЭДС (источник тока) дает несинусоидальную ЭДС (несинусоидальный ток), а в состав электрической цепи входят один или несколько нелинейных элементов;
4) если источник ЭДС (тока) дает постоянную или синусоидальную ЭДС (ток), а один или несколько элементов цепи периодически изменяются во времени.
В данной главе рассматриваются методика расчета и особенности работы линейных электрических цепей при воздействии на них несинусоидальных ЭДС и токов — первый из перечисленных режимов работы. Второй и частично третий режимы работы обсуждаются в гл. 15, четвертый — в гл. 18.
Предыдущие лекции были посвящены анализу электрических цепей при синусоидальных токах и напряжениях. На практике ЭДС и токи в большей или меньшей степени являются несинусоидальными. Это связано с тем, что реальные генераторы не обеспечивают, строго говоря, синусоидальной формы кривых напряжения, а с другой стороны, наличие нелинейных элементов в цепи обусловливает искажение формы токов даже при синусоидальных ЭДС источников.
На практике к несинусоидальности напряжений и токов следует подходить двояко:
- в силовой электроэнергетике несинусоидальные токи обусловливают в общем случае дополнительные потери мощности, пульсации момента на валу двигателей, вызывают помехи в линиях связи; поэтому здесь необходимо «всеми силами» поддержание синусоидальных режимов;
- в цепях автоматики и связи, где несинусоидальные токи и напряжения лежат в основе принципа действия электротехнических устройств, задача наоборот заключается в их усилении и передаче с наименьшими искажениями.
В общем случае характер изменения величин может быть периодическим, почти периодическим и непериодическим. В данном разделе будут рассматриваться цепи только с периодическими переменными.
Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.
В качестве примера на рис. 1,а представлена цепь с нелинейным резистором (НР), нелинейная вольт-амперная характеристика (ВАХ) которого обусловливает несинусоидальную форму тока i в цепи при синусоидальном напряжении u на ее входе (см. рис. 1,б).
Характеристики несинусоидальных величин
Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты (приведены на примере периодического тока):
- Максимальное значение —
.
- Действующее значение —
.
- Среднее по модулю значение —
.
- Среднее за период значение (постоянная составляющая) —
.
- Коэффициент амплитуды (отношение максимального значения к действующему) —
.
- Коэффициент формы (отношение действующего значения к среднему по модулю) —
.
- Коэффициент искажений (отношение действующего значения первой гармоники к действующему значению переменной) —
.
- Коэффициент гармоник (отношение действующего значения высших гармонических к действующему значению первой гармоники) —
.
Разложение периодических несинусоидальных
кривых в ряд Фурье
Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, в связи с чем проверку на их выполнение проводить не нужно.
При разложении в ряд Фурье функция представляется следующим образом:
![]() |
(1) |
Здесь — постоянная составляющая или нулевая гармоника;
— первая (основная) гармоника, изменяющаяся с угловой частотой
, где Т – период несинусоидальной периодической функции.
В выражении (1) , где коэффициенты
и
определяются по формулам
;
.
Свойства периодических кривых, обладающих симметрией
Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник. Знание свойств таких кривых позволяет существенно сэкономить время и ресурсы при вычислениях.
-
Кривые, симметричные относительно оси абсцисс.

К данному типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 2). В их разложении отсутствуют постоянная составляющая и четные гармоники, т.е.
.
Кривые, симметричные относительно оси ординат.
К данному типу относятся кривые, для которых выполняется равенство (см. пример на рис. 3). В их разложении отсутствуют синусные составляющие, т.е.
.
Кривые, симметричные относительно начала координат.
К этому типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 4). При разложении таких кривых отсутствуют постоянная и косинусные составляющие, т.е.
.
Действующее значение периодической несинусоидальной переменной
Как было показано выше, действующим называется среднеквадратичное за период значение величины:
.
При наличии аналитического выражения функции i(t) и возможности взятия интеграла от ее квадрата действующее значение i(t) определяется точно. Однако в общем случае на практике действующее значение переменной определяется на основе информации о действующих значениях конечного ряда гармонических.
Пусть . Тогда
Очевидно, что каждый из интегралов от тригонометрических функций в последнем выражении равен нулю. Таким образом,
.
Аналогичные выражения имеют место для ЭДС, напряжения и т.д.
Мощность в цепях периодического несинусоидального тока
Пусть и
.
Тогда для активной мощности можно записать
.
Как было показано при выводе соотношения для действующего значения несинусоидальной переменной, среднее за период значение произведения синусоидальных функций различной частоты равно нулю. Следовательно,
,
где .
Таким образом, активная мощность несинусоидального тока равна сумме активных мощностей отдельных гармонических:
.
Аналогично для реактивной мощности можно записать
.
,
где Т – мощность искажений, определяемая произведениями действующих значений разнопорядковых гармонических тока и напряжения.
Методика расчета линейных цепей при периодических несинусоидальных токах
Возможность разложения периодических несинусоидальных функций в ряд Фурье позволяет свести расчет линейной цепи при воздействии на нее несинусоидальных ЭДС (или токов) источников к расчету цепей с постоянными и синусоидальными токами в отдельности для каждой гармоники. Мгновенные значения искомых токов и напряжений определяются на основе принципа наложения путем суммирования найденных при расчете гармонических составляющих напряжений и токов. В соответствии с вышесказанным цепь на рис. 5 при воздействии на нее ЭДС
(при расчете спектр рассматриваемых гармоник ограничивается) в расчетном плане представляется суммой цепей на рис. 6.
Здесь .
Тогда, например, для тока в ветви с источником ЭДС, имеем
,
где каждая к-я гармоника тока рассчитывается символическим методом по своей к-й расчетной схеме. При этом (поверхностный эффект не учитывается) для всех гармоник параметры и С постоянны.
;
.
Необходимо помнить, что ввиду различия частот суммировать комплексы различных гармоник недопустимо.
Таким образом, методика расчета линейных цепей при несинусоидальных токах сводится к следующему:
- ЭДС и токи источников раскладываются в ряды Фурье.
- Осуществляется расчет цепи в отдельности для каждой гармонической.
- Искомые величины определяются как алгебраические суммы соответствующих гармонических.
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.
- Что является причиной появления несинусоидальных токов и напряжений в электрических цепях?
- Какие величины и коэффициенты характеризуют периодические несинусоидальные переменные?
- Какие гармонические отсутствуют в спектрах кривых, симметричных относительно: 1) оси абсцисс; 2) оси ординат; 3) начала системы координат?
- Достаточно ли для определения величины полной мощности в цепи несинусоидального тока наличие информации об активной и реактивной мощностях?
- Для каких цепей справедлива методика расчета цепей несинусоидального тока, основанная на разложении ЭДС и токов источников в ряды Фурье?
- Не прибегая к разложению в ряд Фурье, определить коэффициенты амплитуды и формы кривой на рис. 4.
Ответ: .
Определить действующее значение напряжения на зажимах ветви с последовательным соединением резистора с и катушки индуктивности с
, если ток в ней
. Рассчитать активную мощность в ветви.
Ответ: U=218 В; Р=1260 Вт.
Определить действующее значение тока в ветви с источником ЭДС в схеме на рис. 5, если ;
.